Media Gallery

Voluptates laborum eum quas. Pariatur impedit sit veniam est et quasi voluptas voluptatem. Cumque hic enim perferendis amet odit in molestias debitis. Facere nulla qui pariatur quasi mollitia et. Et dolorem dolorum quo in sit architecto. Quidem molestiae natus ipsa ut nihil molestiae numquam tenetur. Ipsum quia sit vitae ipsam et temporibus est. Consequatur recusandae aut aut. Aut esse sed sint. Sit ipsa velit possimus est. Atque doloribus dicta sit beatae necessitatibus. Aut voluptate asperiores nostrum eveniet magnam et consequatur ab accusamus magni.

Protein condensates as materials

We have recently discovered that there are biological proteins that phase separation out of solution to form liquid like protein condensates much the way oil will de-mix from water (see movie 1). So far, this appears to be a very important and general strategy utilized by cells to form compartments with material properties tuned to their specific function. To first approximation, we can understand this process using physical principles developed to understand synthetic polymers. However, unlike synthetic polymers, biological proteins have specific and intricate amino acid sequences.

Movie One

Voluptates laborum eum quas. Pariatur impedit sit veniam est et quasi voluptas voluptatem. Cumque hic enim perferendis amet odit in molestias debitis. Facere nulla qui pariatur quasi mollitia et. Et dolorem dolorum quo in sit architecto. Quidem molestiae natus ipsa ut nihil molestiae numquam tenetur. Ipsum quia sit vitae ipsam et temporibus est. Consequatur recusandae aut aut. Aut esse sed sint. Sit ipsa velit possimus est. Atque doloribus dicta sit beatae necessitatibus. Aut voluptate asperiores nostrum eveniet magnam et consequatur ab accusamus magni.

(Movies and figures from Jawerth et al Science 2020).

Protein condensates exhibit time dependent properties. In this movie we see protein condensates (in green) shortly after formation. Initially their coalescence is fast suggesting quick internal dynamics. Over time, however, the coalescence slows. This indicates that the material has age dependent properties. By following the thermal diffusion of small markers (in magenta) we are also able to estimate the material properties of the droplets as they age.

Fibrils growing in a sea of protein condensates in the lab. Adapted from Boczek et al eLife 2021
Movie 2: Protein condensates (green) exhibiting liquid like fusion events that slow over time. This indicates the condensates changing their properties from liquid-like (like water) to more solid-like (like a rubber ball). Adapted from Jawerth et al Science 2020.